HW Six , Math 530, Fall 2014

Ayman Badawi

QUESTION 1. Let $(G, *)$ be a group.
(i) Let H be a subgroup of G. Let $a \in G$. Then prove that $a \mathrm{Ha}^{-1}$ is a subgroup of G.
(ii) Assume that G has exactly one subgroup of order $n<\infty$, say H. Prove that H is a normal subgroup of G.
(iii) Assume that $|G|=n m$, where $\operatorname{gcd}(n, m)=1$, and suppose that G has a normal subgroup H of order m and a normal subgroup L of order n. Prove that G is group-isomorphic to $G / H \times G / L$. [Hint: Observe that $H \cap L=\{e\}$. To show that the map f is onto: note that if $a \in G$, then $a=h * l=l_{1} * h_{1}$ for some $h, h_{1} \in H$ and $l, l_{1} \in L$ (Why?), and hence $a * L=h * L$ and $a * H=l_{1} * H$]
(iv) Prove that $\left(Z_{12},+\right)$ is group-isomorphic to $\left(Z_{4},+\right) \times\left(Z_{3},+\right)$
(v) Is $\left(Z_{24},+\right)$ group-isomorphic to $\left(Z_{4},+\right) \times\left(Z_{6},+\right)$? Explain
(vi) Assume that G is cyclic of order and $|G|=n<\infty$. Prove that G is group-isomorphic to $\left(Z_{n},+\right)$
(vii) Assume that G is group-isomorphic to $\left(Z_{2},+\right) \times\left(Z_{12},+\right)$. How many distinct subgroups of order 6 does G have? What about of order 2? of order 4? of order 8? explain. Prove that all subgroups of G of order 6 are isomorphic (as groups). Prove that if D_{1} and D_{2} are subgroups of G of order 4, then D_{1} is not group-isomorphic to D_{2}

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com

