HW Six, Math 530, Fall 2014

Ayman Badawi

QUESTION 1. Let (G, *) be a group.

- (i) Let H be a subgroup of G. Let $a \in G$. Then prove that aHa^{-1} is a subgroup of G.
- (ii) Assume that G has exactly one subgroup of order $n < \infty$, say H. Prove that H is a normal subgroup of G.
- (iii) Assume that |G| = nm, where gcd(n,m) = 1, and suppose that G has a normal subgroup H of order m and a normal subgroup L of order n. Prove that G is group-isomorphic to $G/H \times G/L$. [Hint: Observe that $H \cap L = \{e\}$. To show that the map f is onto: note that if $a \in G$, then $a = h * l = l_1 * h_1$ for some $h, h_1 \in H$ and $l, l_1 \in L$ (Why?), and hence a * L = h * L and $a * H = l_1 * H$]
- (iv) Prove that $(Z_{12}, +)$ is group-isomorphic to $(Z_4, +) \times (Z_3, +)$
- (v) Is $(Z_{24}, +)$ group-isomorphic to $(Z_4, +) \times (Z_6, +)$? Explain
- (vi) Assume that G is cyclic of order and $|G| = n < \infty$. Prove that G is group-isomorphic to $(Z_n, +)$
- (vii) Assume that G is group-isomorphic to $(Z_2, +) \times (Z_{12}, +)$. How many distinct subgroups of order 6 does G have? What about of order 2? of order 4? of order 8? explain. Prove that all subgroups of G of order 6 are isomorphic (as groups). Prove that if D_1 and D_2 are subgroups of G of order 4, then D_1 is not group-isomorphic to D_2

Faculty information

Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.

E-mail: abadawi@aus.edu, www.ayman-badawi.com